
Under Construction:
Version Control Systems
by Bob Swart

In the last issue, we explored
Delphi component manage-

ment and installed a shareable
component library. This time, we
move on to sharing entire projects
among several different users.

Working with several program-
mers on the same project at the
same time requires some sort of
rules or support. We could per-
haps make a rule that every time a
programmer starts working on a
given unit, form or other source
file, nobody else is to touch this
file. That way, only one program-
mer should be working on a single
source file at a time. Using a shared
network fileserver, the latest ver-
sions of each source file can be
shared, for example in a directory
where the entire project team can
read and write. We cannot put the
entire project on the network and
work from there, as each program-
mer will need to have at least the
main .DPR project file open and
needs to be able to modify it (eg
when someone adds a new form
and some source lines need to be
added to the .DPR file as well).

A second rule needed when sev-
eral programmers work on the
same source files is the use of ver-
sion numbers. If one programmer
changes a file and puts it back in
the shared network directory, then
all the other programmers must be
able to see that the version number
of that source file has increased, so
any local copies (with lower ver-
sion numbers) must be replaced by
this new source file.

Using these rules, we can indeed
work with several programmers on
the same project, but it’s not easy
to make sure everyone keeps to
these rules – mistakes are easy
and the results often disastrous!

Version Control Systems
Version control systems (VCS)
offer features and functions to

support workgroup development.
They usually provide a common re-
pository where source files can be
stored, along with their version
number and description or com-
ments. VCS also offer the ability to
lock files in the repository, so every
user of the VCS has by default read-
only access to the source files. If
someone needs to actually work on
a certain version of a source file,
then that user needs to tell the VCS
that he wants to work with that
source file. This is done by a Check
Out function, which locks that ver-
sion of the source file so it can’t be
checked out by another user. It
also gives the user the requested
version of the source file with read-
write permission. So, that user is
now the only one who can make
changes to that particular version.
After the changes are done, the file
can be Checked In (with a higher
version number) and is unlocked,
so other users can again check it
out for further changes. The user
who checked the file into the ar-
chive is left with a read-only copy
again, so no nobody can make any
changes (unless someone checks
the file out again).

This check in/out repository
scheme will ensure that, at any one
time, only one programmer is
working on any one version of a
source file. Certain ‘smart’ VCS will
not store the entire new version of
a source file, but will only store the
differences between one file and
another, so that with the original
source file and the differences, the
next version can be recreated (and
previous versions too), but we’ll
discuss those advanced features
some other time.

Basically, a VCS should offer pro-
grammers support for workgroup
management, version management
and/or change management. Work-
group management is the ability to
share source files from a single

repository among multiple users.
Version management is the ability
to have multiple versions of the
same source files. Change manage-
ment is the ability to generate file
differences and re-create specific
versions of project files using the
difference data.

All these VCS functions sure
sound nice, but can we get them
with Delphi? Yes, there are already
several major (read: expensive!)
VCS that work with Delphi. One is
PVCS, which comes with a DLL
hook for Delphi (the hook is also
part of Delphi’s Client/Server Edi-
tion). Another is from MKS, which
also ships with a hook for Delphi.

However, we all know by now
that Delphi is a very open environ-
ment, and it turns out that we can
write our own DLL hook from
Delphi to our most popular VCS.
We can even create our own VCS if
we like and hook it up to Delphi,
which is what the remainder of this
month’s column is all about...

Delphi’s VCS Interface
There are some files which are very
important when it comes to writing
our own VCS for Delphi. These files
are VCSINTF.PAS (the definition of
the VCS class), TOOLINTF.PAS (the
definition of the ToolServices we
need to use) and EXPTINTF.PAS
(the unit where the ToolServices
come from). Other than that, we
can consider a VCS for Delphi to be
just another DLL expert.

In order to write our own VCS to
hook into Delphi’s IDE we need to
derive from the abstract base class
TIVCSClient, the definition for
which csn be found in the file
VCSINTF.PAS. I’ve modified the
source for this file a little, in order
to ensure 16-/32-bit compatibility
for both Delphi 1 and Delphi 2.

The revised source for
VCSINTF.PAS is shown in Listing 1
over the page.

10 The Delphi Magazine Issue 10

The following methods need to
be overriden when deriving our
own VCS. GetIDString is called at
initialisation and should return a
unique identification string.
ExecuteVerb is called when the user
selects a verb from a menu.
GetMenuName is called to retrieve the
name of the main menu item to be
added to Delphi’s menu bar. We
can return a blank string to indicate
no menu. GetVerb is called to re-
trieve the menu text for each verb.
We can return a blank string to get
a separator bar. GetVerbCount is
called to determine the number of
available verbs. This function will
not of course be called if the
GetMenuName function returns a
blank string (indicating no menu).
GetVerbState is called to determine
the state of a particular verb. The
return value is a bit field of states
enabled, disabled and checked.
Finally, the ProjectChange proce-
dure is called when there is any
state change of the current project,
ie when a project is destroyed or
created.

ViCiouS
For my VCS I’ve chosen the name
ViCiouS, which leads to the class
name TViCiouS. We need to over-
ride each of the functions from
TIVCSClient and provide ViCiouS
with its own behaviour.

Note that in order to make the
VICIOUS.DLL work we need to
remember the fact that it’s a DLL
expert, and when writing a DLL
expert the most important thing to
remember is to handle all excep-
tions from within the DLL itself.
The construction we need for that
is taken from my chapter on
Experts & VCS in The Revolutionary
Guide to Delphi 2, published by
WROX Press [I wondered how long
it’d be before we got to the first plug!
Editor]. Every routine has to be
embedded in a try-except block,
where the except calls a single
routine HandleException which
consists of the following two lines:

if Assigned(ToolServices) then
 ToolServices.RaiseException(
 ReleaseException)

This code will make sure that the

raised exception is released again
and handled within the DLL itself,
without going to the big bad out-
side world (which will be unable to
handle the exception, because it
will be out of context there). The
complete class definition and im-
plementation of TViCiouS can be
seen in Listing 2 (over the page).

First of all, we need to supply a
unique ID string, given as result of
the GetIDString function. I’ve
chosen to return DrBob.ViCiouS.
Secondly, we need to define the
name which ViCiouS will use to
manifest itself to the outside world.
This will be the menu name which
appears between Tools and Help on
Delphi’s menu bar. I’ve decided to
use &ViCiouS (beta) for now. Next,
we need to specify how many menu
entries will be used when the
ViCiouS menu is opened. We need
7 menu entries, so GetVerbCount
should return 7. Apart from the
number of menu entries under the
ViCiouS menu, we also need to

specify each one. For this, we need
to override the GetVerb function,
which is given an index argument
to ask for the name of the menu
entry. If we return an empty string
here (such as for entry number 5)
we get a menu separator. Apart
from the names of the menu en-
tries, we can also specify if they are
enabled, disabled or checked.

Now that we have specified what
the names and the state of the
menu verbs are, we also need to be
able to execute these menu verbs
once they are selected by the user.
To do this, we need to override the
method ExecuteVerb and define an
appropriate action for every possi-
ble index. For the first version of
ViCiouS, we just return the name of
the menu entry we selected. Just to
see if everything works.

Finally, our VCS gets a notifica-
tion from Delphi whenever the cur-
rent project changes (from being
loaded to unloaded). We can hook
onto this notification method by

unit VcsIntf;
interface
uses
{$IFDEF WIN32}
 Windows,
{$ELSE}
 WinTypes,
{$ENDIF}
 VirtIntf, ToolIntf;
Const
 isVersionControl = ’Version Control’;
 ivVCSManager = ’VCSManager’;
{$IFDEF WIN32}
 VCSManagerEntryPoint = ’INITVCS0013’;
{$ELSE}
 VCSManagerEntryPoint = ’INITVCS0011’;
{$ENDIF}
Type
 TIVCSClient = class(TInterface)
 function GetIDString: string; virtual;
 {$IFDEF WIN32} stdcall; {$ELSE} export; {$ENDIF} abstract;
 procedure ExecuteVerb(Index: Integer); virtual;
 {$IFDEF WIN32} stdcall; {$ELSE} export; {$ENDIF} abstract;
 function GetMenuName: string; virtual;
 {$IFDEF WIN32} stdcall; {$ELSE} export; {$ENDIF} abstract;
 function GetVerb(Index: Integer): string; virtual;
 {$IFDEF WIN32} stdcall; {$ELSE} export; {$ENDIF} abstract;
 function GetVerbCount: Integer; virtual;
 {$IFDEF WIN32} stdcall; {$ELSE} export; {$ENDIF} abstract;
 function GetVerbState(Index: Integer): Word; virtual;
 {$IFDEF WIN32} stdcall; {$ELSE} export; {$ENDIF} abstract;
 procedure ProjectChange; virtual;
 {$IFDEF WIN32} stdcall; {$ELSE} export; {$ENDIF} abstract;
 end;
{ A function matching this signature must be exported from the VCSManager DLL }
TVCSManagerInitProc = function (VCSInterface: TIToolServices) :
 TIVCSClient {$IFDEF WIN32} stdcall {$ENDIF};
{ Bit flags for GetVerbState function }
Const
 vsEnabled = $01; { Verb enabled if set, otherwise disabled }
 vsChecked = $02; { Verb checked if set, otherwise cleared }
implementation
end.

➤ Listing 1

12 The Delphi Magazine Issue 10

overriding the ProjectChange
method and do something smart
(like telling the user s/he just
closed the project).

Installation
All that’s left now is to compile the
source code and install ViCiouS
just like a regular DLL expert in
DELPHI.INI (for Delphi 1) or the
Registry (for Delphi 2). The VCS
DLL must be placed in the [Version
Control] section of the DELPHI.INI
file for Delphi 1:

[Version Control]
VCSManager=
 C:\USR\BOB\ViCiouS\ViCiouS.DLL

or in the Registry for Delphi 2
by adding VersionControl to the
Registry at:

library ViCiouS;
uses
 WinTypes, WinProcs, SysUtils, Dialogs, VcsIntf,
 ToolIntf, ExptIntf, VirtIntf;
Type
 TViCiouS = class (TIVCSCLient)
 public
 function GetIDString: string; override;
 function GetMenuName: string; override;
 function GetVerbCount: Integer; override;
 function GetVerb(Index: Integer): string; override;
 function GetVerbState(Index: Integer): Word;
 override;
 procedure ExecuteVerb(Index: Integer); override;
 procedure ProjectChange; override;
 end;

procedure HandleException;
begin
 if Assigned(ToolServices) then
 ToolServices.RaiseException(ReleaseException)
end;

function TViCiouS.GetIDString: string;
begin
 try
 Result := ’DrBob.ViCiouS’
 except
 HandleException
 end
end;

function TViCiouS.GetMenuName: string;
begin
 try
 Result := ’ &ViCiouS (beta) ’
 except
 HandleException
 end
end;

function TViCiouS.GetVerbCount: Integer;
begin
 try
 Result := 7
 except
 HandleException
 end
end;

function TViCiouS.GetVerb(Index: Integer): string;
begin
 try

 case index of
 0: Result := ’&Options...’;
 1: Result := ’&Archive Info...’;
 2: Result := ’&Get (check out)...’;
 3: Result := ’&Put (check in)...’;
 4: Result := ’Project &Info...’;
 5: Result := ’’; { menu separator }
 6: Result := ’&About...’
 end
 except
 HandleException
 end
end;

function TViCiouS.GetVerbState(Index: Integer): Word;
begin
 try
 Result := vsEnabled
 except
 HandleException
 end
end;

procedure TViCiouS.ExecuteVerb(Index: Integer);
begin
 try
 MessageDlg(GetVerb(Index), mtInformation, [mbOk], 0)
 except
 HandleException
 end
end;

procedure TViCiouS.ProjectChange;
begin
 try
 MessageDlg(’The project just changed!’,
 mtWarning, [mbOk], 0)
 except
 HandleException
 end
end;

function InitVCS(Delphi: TIToolServices) :
 TIVCSClient; export;
begin
 ExptIntf.ToolServices := Delphi;
 Result := TViCiouS.Create
end;

exports
 InitVCS name VCSManagerEntryPoint;
begin
end.

➤ Listing 2

KEY_CURRENT_USER\Software\Borland\Delphi\2.0\

and adding a new Key named
VCSManager with the location of
VICIOUS.DLL as its value (Figure 1).

After installing ViCiouS, when
you fire up Delphi, as the IDE loads,
it will find and load the specified
VCS DLL and attempt to obtain a
proc address for the DLL’s initiali-
zation function. This function must
be exported using the constant
VCSManagerEntryPoint.

The VCS client object should be
returned by the VCS manager DLL
as the result of the init call. Delphi
is responsible for freeing the client
object before unloading the VCS
manager DLL.

We can now fire up all the
ViCiouS menu items, but we only
get a message dialog with the name
of the chosen item for this first test
version. So, let’s now move on to
put some real functionality into our
new VCS!

➤ Figure 1

14 The Delphi Magazine Issue 10

The ViCiouS Repository
In order to make ViCiouS do useful
work we need to connect it to a
repository or database to hold the
project source files. So, we first
need to think about what informa-
tion we actually want to store.
Table 1 shows what we want to
store, in a multi-user database.

To generate a new, empty table
for ViCiouS to use we’ll use a TTable
component with the Paradox file
format. The combined FileName,
Version and VersionRevision fields
will serve as a unique index key.
The source code to do this is
shown in Listing 3.

This code is actually called from
the Options dialog in ViCiouS,
where we can select an existing
VICIOUS.DB table or create a new,
empty one (Figure 2). Note that
ViCiouS will try to determine your
login name automatically and that,
for now, the archive database table
will always need to have the name
VICIOUS.DB.

The code to obtain the login
name consists of a single call to
DbiGetNetUserName, which is part of
DbiProcs (Listing 4).

Archive Information
After we’ve selected or created a
VICIOUS.DB table in the Options
dialog, we can get information on
the files that have been checked
into the archive, using the Archive
Info menu option.

Although you can put any file
into the archive that you want, I’d
recommend putting only files from
one project in one archive (ie use a
separate archive for each project).
For multi-user development, you
need to set up the archives in a
shared space on the network and
store the projects on local drives.

The Archive Information form is
shown in Figure 3. After selecting a
filename, use the navigator buttons
to go to the previous/next version
and revisions. We can decide to
check a file out of the archive by
clicking on the speed button in the
bottom left of the form.

Archive Actions
Now that we have the archive and
access to the project and archive
information, it’s time to be able to

FieldName Description

FileName Name of the file being stored. The path is not stored,
but considered to be the same as the main project file
(ie all files for a project remain in the same directory).

Version The version of the source file. A higher version denotes
a newer file.

VersionRevision The revision of the version. A higher revision of the
same version denotes a newer file.

VersionComments Comments that explain what changed in this
version/revision compared to the previous one.

VersionTimeStamp The date/time that this version was checked into the
repository.

FileDate The date/time of the file that was checked in (so we
can re-set that date/time the file is checked out again).

FileContents The actual contents of the file. These contents will
be stored in a Blob field, using the LoadFromFile and
SaveToFile methods for interfacing.

FormDate The date/time of the form (belonging to the unit file
above) that was checked in (so we can re-set that
date/time when we check the form back out again).

FormContents The actual contents of the form (belonging to the unit
file above), which will also be stored in a Blob field.

FileReadOnly To indicate that this is not the latest version/revision,
so only read-only copies of this file can be made
(ViCiouS does not support branching of versions).

Locked To indicate whether or not this particular version/
revision is locked by someone. Note that only the latest
version/revision is able to be locked, all others are
read-only versions.

LockedBy The name of the user that has the current file locked.

LockedComments Comments of the user that explain why this file was
locked (ie what will be changed).

LockedTimeStamp The date/time when the file was locked (so we can
also see how long the file has been locked).

➤ Table 1: Contents of the project archive

➤ Figure 2

June 1996 The Delphi Magazine 15

put files in and get files out of the
archive. When we get something
from the archive, we want the file
in the archive to be locked by us
(so nobody else can modify it), and
the file on my disk to be read-write.
When we put something back in the
archive, we want the version on
our disk to be set to read-only, and
the version in the archive to be
unlocked. This way, we can always
only modify those files that we’ve
previously done a get for out of the
archive. If we want to get a file
without being able to modify it, we
can always get a read-only copy, of
course (so we’ll always be able to
compile the project with the latest
file versions, even if some units are
still in use by other programmers).
Using only part of the Archive form,
we can create a Put (check in) form
quite easily (Figure 4).

We always check the current
open file in the archive. If we check
in a unit or form, then these are
combined into one entity. This is
what makes ViCiouS special when
compared to PVCS or MKS: they
may be more complex and feature-
rich, but don’t understand the
coupling of Delphi forms and units.

Get (Figure 5) looks a lot like Put,
as they are both derived from the
general Archive Information form.

Project Information
Now that we’ve defined the internal
format of our archive, it’s time to

begin
 with TTable.Create(Self) do begin
 DatabaseName := DirectoryListBox1.Directory;
 TableName := ’ViCiouS.DB’;
 Active := False;
 TableType := ttParadox;
 with FieldDefs do begin
 Clear;
 Add(’FileName’, ftString, 17, True);
 Add(’Version’, ftInteger, 0, True);
 Add(’VersionRevision’, ftInteger, 0, True);
 Add(’VersionComments’, ftMemo, 1, False);
 Add(’VersionTimeStamp’, ftDateTime, 0, True);
 Add(’FileDate’, ftDateTime, 0, True);
 Add(’FileContents’, ftBlob, 0, True);
 Add(’FormDate’, ftDateTime, 0, True);
 Add(’FormContents’, ftBlob, 0, False);
 Add(’FileReadOnly’, ftBoolean, 0, True); { both File & Form }
 Add(’Locked’, ftBoolean, 0, True);
 Add(’LockedBy’, ftString, 12, False);
 Add(’LockedComments’, ftMemo, 1, False);
 Add(’LockedTimeStamp’, ftDateTime, 0, False)
 end;
 with IndexDefs do begin
 Clear;
 Add(’Index’, ’FileName;Version;VersionRevision’,
 [ixPrimary, ixUnique])
 end;
 CreateTable;
 Free;
 end;
end;

➤ Above: Figure 3 ➤ Right: Figure 5

➤ Figure 4
➤ Below: Listing 3

16 The Delphi Magazine Issue 10

define external sources of informa-
tion we would like to supply to the
users of ViCiouS, like the current
project information (all the files in
the local open project).

The source code to obtain the
information regarding the number
and names of the units and forms
is actually very easy, and can be
obtained by querying ToolServices
(Listing 5).

Note that in Delphi 1 we need to
go from 0 to GetUnitCount to get all
the unit names. However, we need
to go from 0 to GetFormCount-1 to
get the form names, for both Delphi
1 and 2. For Delphi 2 we also need
to go from 0 to GetUnitCount-1, so it
seems that the GetUnitCount API
from ToolServices in Delphi 1 was
actually under-reporting by one
unit...

If DRBOB.DLL version 1.02 or
higher (1.04 is recommended) is
found, then the Project Information
Expert is used to replace the
Project Information dialog. It con-
tains the same link to the ViCiouS
check-out functions, but offers two
enhanced functions to expand and
reduce your project. Opening all
the project files or closing them all
is also very easy once you know
how to use the ToolServices APIs,
as shown in Listing 6.

ViCiouS Beta
ViCiouS is now in beta (16-bit only
for now) and the final 16- and 32-bit
version will be officially announced
at the Borland Developers Confer-
ence in Anaheim at the end of July
1996. Until that date, I’m open to
your suggestions for ViCiouS 1.0!
The final version will include calls
to DbiRegisterCallback to make

procedure TOptionsFrm.FormCreate(Sender: TObject);
var netUserName: DbiUserName;
begin
 if DbiGetNetUserName(netUserName) = DBIERR_NONE then
 Edit1.text := StrPas(netUserName)
 else
 Edit1.text := ’USER’ { default }
end;

➤ Listing 4

var i,j: Integer;
begin
 try
 if Assigned(ToolServices) then with ToolServices do begin
 for i:=0 to {$IFDEF WIN32} Pred(GetUnitCount) {$ELSE}
 GetUnitCount{$ENDIF} do begin
 Tmp := ExtractFileName(GetUnitName(i));
 StringGrid1.Cells[0,i+1] := Tmp;
 Tmp := ChangeFileExt(Tmp,’.DFM’);
 for j:=0 to Pred(GetFormCount) do
 if ExtractFileName(GetFormName(j)) = Tmp then
 StringGrid1.Cells[1,i+1] := Tmp
 end
 end;
 except
 HandleException
 end
end;

➤ Listing 5

procedure TInformationForm.ExpandBtnClick(
 Sender: TObject);
var i: Integer;
begin
 try
 if Assigned(ToolServices) then
 with ToolServices do begin
 SaveProject;
 for i:=2 to GetUnitCount do
 OpenFile(GetUnitName(i))
 end
 except
 HandleException
 end
end {ExpandBtnClick};

procedure TInformationForm.ReduceBtnClick(
 Sender: TObject);
var i: Integer;
begin
 try
 if Assigned(ToolServices) then
 with ToolServices do begin
 SaveProject;
 for i:=1 to GetUnitCount do
 CloseFile(GetUnitName(i))
 end
 except
 HandleException
 end
end {ReduceBtnClick};

➤ Listing 6

sure each user gets a notification
whenever another user changes
some record in the database.

The first public beta version of
ViCiouS can be found on the disk
(with some, but not all, of the
source code) and can also be found
in LIB 22 of the DELPHI forum on
CompuServe or on my home page
(see below).

The installation of the 16-bit beta
of ViCiouS is pretty straightfor-
ward, and consist of nothing more
than executing INSTALL.EXE
(make sure VICIOUS.DL_ is in the
same directory). Note that by using
this beta version you agree that
I will not be held responsible for
any damage or data loss on your
machines!

Ideas and issues I am planning to
explore for future versions include
the implementation of a visual
difference/merge utility, for which
Arjan Jansen and I are working on
another article for a future issue
(something to look forward to!).

Bob Swart (aka Dr.Bob, find him at
http://www.pi.net/~drbob/) is the
Delphi Specialist for Bolesian in
The Netherlands and a freelance
technical author. Bob is co-author
of The Revolutionary Guide to
Delphi 2, published by WROX
Press. In his spare time Bob likes to
watch video tapes of Star Trek
Voyager with his 2-year old son
Erik Mark Pascal.

June 1996 The Delphi Magazine 17

	Version Control Systems
	Delphi's VCS Interface
	ViCiouS
	Installation
	The ViCiouS Repository
	Archive Information
	Archive Actions
	Project Information
	ViCiouS Beta

